Driven by the carbon peaking and carbon neutrality target, the large-scale grid-connected of renewable energy such as wind and solar has increased, and the volatility and randomness have posed new challenges to the stability of the power grid frequency. In this case, battery energy storage is a grid auxiliary resource with fast response and adjustable parameters, which can provide frequency support for the grid system in a short period. This paper studies the frequency regulation strategy of large-scale battery energy storage in the power grid system from the perspectives of battery energy storage, battery energy storage station, and battery energy storage system, respectively. First of all, the droop control based on logistic function and the virtual inertia control based on piecewise function are proposed for battery energy storage frequency regulation, which improves the performance of battery energy storage power output effectively. Second, the weighting factor is set according to the current battery charge to achieve the most optimal distribution of frequency regulation power for each battery pack in the battery energy storage station. In the end, a control framework for large-scale battery energy storage systems jointly with thermal power units to participate in system frequency regulation is constructed, and the proposed frequency regulation strategy is studied and analyzed in the EPRI-36 node model. The results of the study show that the proposed battery frequency regulation control strategies can quickly respond to system frequency changes at the beginning of grid system frequency fluctuations, which improves the stability of the new power system frequency including battery energy storage. In addition, this paper also provides a certain reference for the construction of the new power system dispatching that integrates “Generation-Grid-Load-Storage” in the future.
Loading....